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Abstract

A numerical model is developed to study the dissolution of droplets in a binary mixture with miscibility gap. The

moving boundary problem is solved with a modified volume of fraction method to compute the time evolution of the

average drop radius and the velocity and concentration distributions around the dissolving drop. The modeling results

are presented to explain experimental findings that show stable and oscillatory plumes rising from droplets of methanol

that dissolve into a cyclohexane liquid matrix.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years binary liquid–liquid systems, and

particularly partially miscible liquid pairs, have been

finding increasing applications in fundamental studies of

interphase mass transfer. For instance, transparent liq-

uids are often used as models for the investigation of the

behaviour of metal alloys in the liquid state. Typically

these alloys are solidified from a homogeneous binary

mixture into regions of their phase diagrams with a

miscibility gap [1]. The formed two-phase liquid consists

of dispersed drops in a matrix liquid. Since the materials

properties can be improved by a uniform dispersion of

fine particles in the primary phase, the quality of the

metal alloys depends on the degree of homogeneity of

the minority phase distribution.

During alloys solidification, the melt is subject to

temperature and concentration gradients that, in the

gravity field, lead in most cases to buoyancy driven

convective flows. Moreover, as the phase concentrations

are different, the minority phase may experience buoy-

ancy or sedimentation [2].
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Due to major difficulties in investigating liquid metals

at high temperatures (toxicity, reactivity, opaqueness),

organic liquids are often used as model substances to

study mixing and separation. For instance, methanol

and cyclohexane have been investigated both on earth

and in space since they are transparent liquids at am-

bient temperature. They exhibit a miscibility gap in the

phase diagram and have a relatively small difference in

density (0.769 g/cm3 the cyclohexane, 0.782 g/cm3 the

methanol). In principle, this allows minimization of

buoyancy and sedimentation effects.

One basic problem to be studied is the migration of

droplets imbedded in a different fluid in the presence of a

temperature gradient, and gravitational effects (see e.g.

[3]). Furthermore, the issues of coalescence, growth and

disappearance of droplets during the phase separation

processes are of basic importance [1].

In preparation of microgravity experiments the dis-

solution process has been investigated under normal

gravity conditions.

A droplet of methanol was formed on the tip of a

capillary immersed into the cyclohexane to study the

droplet dissolution. The experimental procedure includes

the visual observation of the droplet and an interfero-

metric analysis performed with a Wollaston optical sys-

tem, to analyze the concentration field and therefore the

mass transfer at the binary liquid–liquid interface.
ed.



Nomenclature

c mass concentration

D diffusion coefficient [m2/s]

g gravity acceleration (9.81 m/s2)

i ith grid point of the mesh in the x direction

j jth grid point of the mesh in the y direction

n normal coordinate [m]

n̂n unit perpendicular to the interface

P pressure [Pa]

r distance from the drop center [m]

R drop radius [m]

T temperature [K]

t time [s]

V velocity vector [m/s]

x, y cartesian coordiantes [m]

Greek symbols

q density [kg/m3]

r Nabla operator [1/m]

r2 Laplace operator [1/m2]

l dinamic viscosity [kg/m/s]

b solutal expansion coefficient

/ phase field variable (1 for droplet phase, 0

for matrix phase)

Dt time step [s]

Dx size of the grid cell in the x direction [m]

Subscripts

1 drop liquid

2 matrix liquid

(e) equilibrium interface conditions

m matrix concentration far away from the in-

terface

0 initial condition
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In spite of the small differences in density between the

droplet and the surrounding matrix, a convective mo-

tion is evident in the experimental cell, causing a strong

distortion of the concentration distribution (compared

to the purely diffusive situation). Furthermore, the

plume, originated at the tip of the drop and directed

upwards, exhibits in some cases pronounced regular

oscillations that reveal a convective instability of the

oscillatory type.

In previous experiments with different liquid–liquid

systems (aniline/water, isobutanol/water, ethilacetate/

water, see [4]) similar convective plumes become unsta-

ble due to Marangoni effects induced by surfactants. In

the above mentioned studies, the systems basically

consisted of sitting droplets (if the droplet liquid is

lighter than that of the matrix) or of pendant droplets (if

the droplet liquid is heavier than that of the matrix).

Correspondingly, the convective plume is directed

downward (for pendant droplet) or upwards (for sitting

droplet). In the system under investigation, even though

the droplet (methanol) is heavier than the surrounding

matrix (cyclohexane), the plume is directed upwards

and, in many cases, the flow and concentration fields at

the dissolving interface exhibit periodic oscillations.

The objective of this paper is to provide a theoretical

explanation of the observed phenomena with a numer-

ical model to study the droplet dissolution process.
Fig. 1. Sketch of the geometrical configuration.
2. Experiments

The experiments have been performed with a Woll-

aston interferometer, using a Hellma cell made of
quartz, 1 [cm] · 1 [cm] · 4 [cm], filled with liquid. A

droplet of a liquid partially miscible with that of the

matrix (volume ranging from 1 to 5 ll) was formed at

the tip of a capillary (1 mm diameter), as shown in Fig.

1. The temperatures at the top and bottom walls are

controlled by Peltier elements. In this system the droplet

liquid is denoted as phase 1 and the liquid matrix as

phase 2.

Fig. 2 shows an image of a droplet of butanol dis-

solving in water. Since the butanol is lighter than water

(q1 ¼ 0:81 g/cm3; q2 ¼ 1 g/cm3), the interference fringes



Fig. 2. Rising plume from a droplet of butanol dissolving in

water at ambient temperature (initial drop volume of 1.5 ll).

Fig. 4. Rising plume from a droplet of methanol dissolving in

cyclohexane at ambient temperature (initial drop volume of

3 ll).
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show a convective plume originated at the dissolving

interface and directed upwards. Fig. 3 shows the be-

haviour of a droplet of methanol in a matrix of hexane.

In this case the drop liquid is heavier than the matrix

liquid (q1 ¼ 0:782 g/cm3; q2 ¼ 0:65 g/cm3) so that the

flow around the droplet, shown by the interference

pattern, is directed downward.

Fig. 4 shows a dissolving drop of methanol in cy-

clohexane. As explained before, the drop liquid is

heavier than the matrix (q1 ¼ 0:782 g/cm3; q2 ¼ 0:769 g/

cm3) so one should expect a behaviour similar to that of

Fig. 3. On the contrary, a convective plume originates at

the dissolving interface directed upwards, similar to the

case illustrated in Fig. 2.
Fig. 3. Descending flow from a droplet of methanol dissolving

in hexane at ambient temperature (initial drop volume of

1.5 ll).
This phenomenon can be explained by the density of

the cyclohexane–methanol system as a function of the

concentration. When a drop of pure methanol is injected

into the cyclohexane liquid matrix, equilibrium at the

liquid–liquid interface is attained instantaneously [5].

Assuming negligible thermal effects (temperature differ-

ences less than 0.2 �C were measured with thermocou-

ples), according to the phase rule, the concentrations at

the interface will be c1ðeÞ and c2ðeÞ (inside and outside the

droplet, respectively), i.e. the equilibrium methanol

concentrations at the consolute points of the miscibility

diagram, see Fig. 5a. According to [6], the density of the

binary mixture is a decreasing function of the methanol

concentration for 0 < c < c2ðeÞ, and an increasing func-

tion for c1ðeÞ < c < 1 (see Fig. 5b). Correspondingly the

mixture surrounding the droplet is lighter than the ex-

ternal matrix and therefore a rising plume is formed.

The time evolution of the average droplet radius was

measured for different initial volumes and at different

temperatures. Typical results obtained at ambient tem-

perature are shown in Fig. 6, for the case of a droplet

with initial volume of 3 ll. The experimental results are

compared with the results of numerical simulations (see

next section) under zero-gravity and normal gravity

conditions. In the purely diffusive situation (zero-g), the
droplet radius decreases proportional with the square

root of time, according to the analytical solution [1]

R2 ¼ R2
0 � D

cm�c2ðeÞ
c2ðeÞ�c1ðeÞ

t, where D is the diffusion coefficient,

cm is the matrix concentration (far away from the in-

terface). In the presence of the gravity acceleration, the

main effect of the convective motion around the dis-

solving drop is to change the concentration distribution.

As will be discussed below, the isoconcentration lines are



Fig. 5. Phase diagram (a) and density versus methanol con-

centration (b) for the cyclohexane–methanol system.
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Fig. 6. Time evolution of the measured average drop radius

and comparison with numerical results. The initial volume of

the droplet (methanol) is 3 ll. The matrix is cyclohexane. (a)

Comparison between numerical and experimental results; (b)

comparison between numerical results, under zero gravity

conditions, and the analytical solution.
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squeezed by the natural convection in the boundary

layer close to the drop surface (see Figs. 8 and 9), in-

creasing the solute gradient and the dissolution rate,

compared to the purely diffusive situation.

The experiments have shown that when the initial

volume of the droplet exceeds a critical value, depending

on the experimental conditions (e.g. the temperature),

after a transient time, the plume exhibits periodic os-

cillations that reveal a convective instability (Fig. 7). The

experiments performed at ambient temperature (25 �C)
show that the instability occurs only when the initial

volume of the droplet is greater than 3 ll and that the

oscillation period is an increasing function of the droplet

diameter. Since the main objective of this work is to

develop a numerical model for the simulation and the

explanation of the dissolution process, details of the

experimental results will be presented in a forthcoming

paper.
3. Numerical model

3.1. Basic assumptions

Fig. 1 shows the geometry of the problem. A liquid

drop is suspended in a liquid matrix. The liquid system

(drop and matrix) is in a region of the phase diagram (T
versus C) where it separates continuously into two

phases, according to the equilibrium curve of Fig. 5. The

droplet is anchored to the needle (or capillary tube) used
to inject the liquid into the test cell. Since the tempera-

ture is almost uniform during the process, the pure liq-

uids have constant phase density and transport

coefficients. The drop is bounded by a spherical liquid/

liquid interface whose radius changes in time due to the

dissolution.

The thickness of the needle in the numerical simula-

tions is negligible, but no slip conditions have been im-

posed along the axis to simulate the presence of the

needle.

In order to evaluate the effect of the needle on the

rate of dissolution, some preliminary computations have



Fig. 7. Oscillatory instability of the axisymmetric plume rising from a drop of methanol dissolving in a cyclohexane matrix at ambient

temperature. The initial volume of the drop is 5 ll. The images are taken at time intervals of 1 s.
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been carried out taking into account its presence. A

parametric study has shown that the influence of the

needle on the results, for the diffusive case, scales ac-

cording to the non-dimensional parameter R2
cap=ð4R2

dropÞ
(where Rdrop and Rcap are the radius of the drop and of

the needle respectively). For the present case this pa-

rameter is 0.07, and therefore the needle perturbation on

the dissolution rate is negligible. In addition, this influ-

ence becomes even less important if convection is taken
into account because, in the convective regime, a solu-

tal plume is created ‘‘above’’ the dissolving drop and

the fluid near the needle is close to stagnation condi-

tions.

The hypothesis of spherical surface is acceptable, as

confirmed by the experiments, since the volume of the

liquid drop is relatively small (few microliters) and the

density difference between the two phases is very low, as

discussed above.
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3.2. Moving boundary method

In this section �moving boundary’ numerical methods

are briefly outlined to point out similarities and differ-

ences with the numerical algorithm proposed here for

the dissolution of drops in different liquids (dissolution

of drops volume of fluid method––DDVFM). The nu-

merical simulations of these problems require a discret-

ization or nodalization to allow numerical treatment on

computers. There are two fundamentally different ap-

proaches: Eulerian methods use a frame of reference

(discretization grid or mesh, control volumes, etc.) fixed

in space, and matter moving through this frame of ref-

erence. Lagrangian methods instead use a frame of ref-

erence (marker particles) fixed to and moving with the

matter. The first method capable of modelling multi-

phase flow, separated by a moving interface, was the

Marker and Cell (MAC) of Harlow and Welch [7]. This

was in fact a combination of an Eulerian solution of the

basic flow field, with Lagrangian marker particles at-

tached to one phase to distinguish it from the other

phase. While the staggered mesh layout and other fea-

tures of MAC have become a model for many other

Eulerian codes, the marker particles proved to be com-

putationally too expensive and have been rarely used.

In the specific case of droplets growing or dissolving

in a matrix of different liquid and in order to introduce

novel numerical techniques, one must generally accom-

plish at least two things simultaneously: (a) determine

the concentration fields in both liquid phases and (b)

determine the position of the interface between the

phases 1 and 2. According to the technique used to

address (a) and (b), in principle the numerical proce-

dures able to solve these problems can be divided in

multiple or single region formulations.

Multiple region solutions are based on independent

equations for each phase, coupled with suitable bound-

ary conditions at the interface. This approach to the

problem takes the point of view that the interface sep-

arating the bulk phases is a mathematical boundary of

zero thickness where interfacial conditions are applied.

These interfacial conditions couple to the concentration

equations in the bulk and this system of equations and

boundary conditions provide a means to address (a) and

(b). Difficulties arise when this technique is employed

since conditions on mass flux, velocity, and solubility

evolution have to be accounted for in the vicinity of the

interface. This effectively rules out the application of a

fixed-grid numerical solution, as deforming grids or

transformed co-ordinate systems are required to account

for the position of the phase front.

Single region (continuum) formulations (or �phase
field’ models) eliminate the need for separate equations

in each phase, by establishing conservation equations in

the whole field. From a theoretical point of view, the

major advantage of the single region formulations is that
they do not require the use of quasi-steady approxima-

tions, numerical remeshing and coordinate mapping. In

a phase-field model, a phase-field variable / changing in

space and time is introduced to characterize the phase.

In place of the �sharp’ transition from one phase to the

other that would characterize the multiple region for-

mulations, here the phase-field changes smoothly but

rapidly through an interfacial region. The effect is a

formulation of the free boundary problem that in prin-

ciple does not require application of interfacial condi-

tions at the unknown location of a phase boundary. This

formulation is at the base of the most recent and popular

methods used for moving boundary problems (volume

of fluid VOF methods, see e.g. [8–10]; enthalpy methods,

see e.g. [11–13]).

3.3. DDVFM––volume of fluid method for dissolving

drops

The DDVFM is a single region formulation and al-

lows a fixed-grid solution to be undertaken. It is there-

fore able to utilize standard solution procedures for the

fluid flow and species equations directly, without re-

sorting to mathematical manipulations and transfor-

mations.

The model is based on the mass balance equations.

The diffusion of the species is governed by the equations

(droplet phase 1, with / ¼ 1, matrix phase 2 with

/ ¼ 0):

oC1

ot
¼ /½�r � ðV C1Þ þ Dr2C1� ð1Þ

oC2

ot
¼ ð1� /Þ½�r � ðV C2Þ þ Dr2C2� ð2Þ

The species equations (1) and (2) are solved in the

computational domain including the droplet and the

matrix. The presence of the terms / and (1� /) ensures
in fact that each equation characterizes a different phase.

At the initial instant both the phases are supposed to be

at constant concentration (C1ðoÞ and C2ðoÞ respectively).

The behaviour of the two phases is coupled through the

equilibrium concentration values imposed on the two

sides of the interface. On the interface (0 < / < 1), the

concentrations must satisfy the equilibrium conditions:

C1ji ¼ C1ðeÞ ð3Þ

C2ji ¼ C2ðeÞ ð4Þ

Eqs. (3) and (4) behave as �moving boundary conditions’.

The transition region, defined by the mathematical con-

ditions jr/j 6¼ 0, 0 < / < 1, moves through the com-

putational domain according to the behaviour of the

different phases (i.e. according to the behaviour of /).
The flow is governed by the continuity, and Navier–

Stokes equations:
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r � V ¼ 0 ð5Þ

oðqV Þ
ot

¼ �rp �r � ½qV V � þ r � ½lrV � þ F g ð6Þ

where

q ¼ q1ðoÞ/þ q2ðoÞð1� /Þ ð7aÞ

l ¼ l1/þ l2ð1� /Þ ð7bÞ

The Boussinesq approximation for the density is adop-

ted, so that the buoyancy term of Eq. (6) reads:

Fg ¼ g½b1ðC1 � C1ðoÞÞ�/þ g½b2ðC2 � C2ðoÞÞ�ð1� /Þ ð7cÞ

where b1 and b2 are the solutal expansion coefficients

related to the phases (1) and (2).

The tracking of the interface between the phases is

accomplished by the solution of a special continuity

integral equation for the volume of the liquid droplet

taking into account the release or absorption of solute

through the interface. The liquid drop is assumed to be a

sphere of radius R increasing due to growth or de-

creasing due to dissolution. Using mass balance, one

obtains for the time evolution of the radius:

dR
dt

¼ D
C1ji � C2ji

1

S

I
oC2

on

����
i

�
þ oC1

on

����
i

�
dl ð8Þ

where S is the surface of the droplet,

oC
on

¼ rC � n̂n ¼ a
oC
ox

þ b
oC
oy

ð9Þ

n̂n ¼ � r/
jr/j ¼ ða; bÞ ð10aÞ

a ¼ � o/
_

ox

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o/
_

ox

 !2

þ o/
_

oy

 !2

vuuut,
ð11aÞ

b ¼ � o/
_

oy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o/
_

ox

 !2

þ o/
_

oy

 !2

vuuut,
ð11bÞ

The unit vector n̂n perpendicular to the interface results

from the gradient of a smoothed phase field /
_

, where the

transition from one phase to the other takes place con-

tinuously over several cells (typically 4 or 5 for a grid

having 200· 200 points). The smoothed phase field /
_

is

obtained by convolution of the unsmoothed field / with

an interpolation function. The interface orientation de-

pends on the direction of the volume fraction gradient of

the phase /
_

within the cell, and that of the neighbour cell

(or cells) sharing the face in question. Depending on the

interface’s orientation and on the side (phase (1) or

phase (2)) on which computations are performed, con-

centration gradients are discretized by forward or

backward schemes.
For C ¼ C1, oC=ox ¼ ðCi;j � Ci�1;jÞ=Dx if a > 0,

oC=ox ¼ ðCiþ1;j � Ci;jÞ=Dx if a < 0; for C ¼ C2, oC=ox ¼
ðCiþ1;j � Ci;jÞ=Dx if a > 0, oC=ox ¼ ðCi;j � Ci�1;jÞ=Dx if

a < 0 (similar relationships hold for the concentration

gradient along y).
Then the distribution of the phase variable / is de-

fined according to the radius of the drop at the new

instant ðnþ 1Þ:

r < R; / ¼ 1 ð12aÞ

r > R; / ¼ 0 ð12bÞ

Eqs. (1), (2), (5), (6) and (8) represent a system of four

partial differential equations and one ordinary differen-

tial equation whose solution governs the non-linear be-

haviour of the physical system under investigation.

Note that the present mathematical model and related

numerical technique can be regarded as a very hybrid

volume of fluid method. In the ‘‘classical’’ VOF methods,

the phase field variable / is �advected’ solving an appro-

priate partial differential transport equation; this formu-

lation has been often used for the solution of typical

problems dealing with the migration of bubbles or drops

in liquids. It relies on the fact that the fluids are not in-

terpenetrating. For the present method the equation

governing the evolution of / comes from mass balance

conditions rather than from transport. Moreover inter-

penetration of the different fluids is allowed according to

the coupled behaviour of Eqs. (1), (2) and (8).

Eq. (8) moreover provides the necessary coupling

among the species and momentum equations. The den-

sity and the dynamic viscosity of the liquid in Eq. (6) in

fact are computed according to the instantaneous dis-

tribution of /. Further coupling between the species and

momentum equations is due to the volume force term

(Boussinesq approximation) in Eq. (6).

3.4. Discretization and solution

Eqs. (1), (2), (5), and (6) subjected to the initial and

boundary conditions are solved numerically in primitive

variables by a control volume method. The domain is

discretized with a cylindrical axisymmetric uniform

mesh and the flow field variables defined over a stag-

gered grid. Forward differences in time and upwind

schemes in space (second order accurate) are used to

discretize the partial differential equations.

The computation of the velocity field at each time

step is split into two substeps. In the first, an approxi-

mate non-solenoidal velocity field V � which corresponds

to the correct vorticity of the field is computed at time

ðnþ 1Þ neglecting the pressure gradient term in the

momentum Eq. (6). In the second substep, the pressure

field is computed by solving the equation resulting from

the divergence of the momentum equation taking into

account Eq. (5):
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r2p ¼ 1

Dt
r � V � ð13Þ

This equation is solved with a successive over relaxation

(SOR) iterative method. For further details on the nu-

merical method see e.g. [14–16]. On the solid walls and on

the symmetry axis the oP=on ¼ 0 condition is imposed.

Finally, the correct solenoidal velocity field is up-

dated using the computed pressure field to account for

continuity:

V nþ1 ¼ V � � Dtrpn ð14Þ
4. Results and discussion

Fig. 8 shows the computed evolution of the concen-

tration and flow field patterns at the beginning of the

dissolution process. The numerical results refer to a

droplet of methanol dissolving into a matrix of cyclo-

hexane at ambient temperature. The initial volume of

the droplet is 3 ll with a diameter of 1.8 mm. The

computations are carried out considering normal

(Earth) gravity and therefore buoyancy effects. The re-

sults of Fig. 8 show the streamlines and the concentra-

tion of methanol around the dissolving droplet at

different times. The plume starts rising and after t ¼ 100

s fully developed velocity and concentration fields are

established.

Fig. 6a shows the computed time dependence of the

average drop radius. The initial volume of the drop is the

same as in Fig. 8 (3 ll). The numerical simulations have

been carried out in the two cases: (a) zero gravity con-

ditions (i.e. zero buoyancy); (b) Earth gravity conditions

(i.e. in the presence of buoyancy convection). The nu-

merical results show that buoyancy induced convection

increases the droplet dissolution, in comparison with the

purely diffusive situation. The volume of the drop de-

creases more rapidly as time increases, and better cor-

relation with the experimental results is achieved if

convection is taken into account.

The numerical results corresponding to zero gravity

(purely diffusive) conditions have been compared in Fig.

6b with the analytical solution R2 ¼ R2
0 � D

cm�c2ðeÞ
c2ðeÞ�c1ðeÞ

t,

obtained by the integration of the diffusion equation

assuming a spherical droplet dissolving in an unbounded

medium at constant concentration. The droplet radius

thus changes as the square root of time [1].

Fig. 6b shows the time profiles of the quadratic dis-

solution ðR2=R2
0Þ versus the non-dimensional time

ðtD=R2
0Þ. The good correlation between the results of the

numerical model and the analytical solution provides a

satisfactory validation of the numerical method on this

specific problem.

As discussed in Section 2, the experiments performed

with binary liquid–liquid systems have shown that the
phenomena under investigation may exhibit ‘‘stable’’

rising solutal plumes (created above the dissoving drop)

or ‘‘pulsating’’ jets showing time-dependent oscillatory

behaviour. The numerical results confirm that, for suf-

ficiently small values of the initial volume of the drop,

the convection in the liquid column is laminar and

steady, but if this initial volume exceeds certain critical

values, the liquid motion undergoes a transition to an

oscillatory axisymmetric complex flow pattern. Note

that the experimental fringes around the dissolving drop

in the observation plane are defined curves whose shape

approximately looks like two symmetric folds disposed

on the left and right sides of the drop (see Fig. 7). The

pulsating behaviour consists in ‘‘quasi-periodic’’ ex-

pansions and contractions of the two folds. The velocity

and the concentration fields are symmetric and the time-

dependence is observed as a synchronous pulsation of

these symmetrical folds (they travel axially up and

down). The periodic motion is not confined however

to the zone close to the drop surface and affects also

the behaviour of the plume carrying methanol towards

the top of the test cell. According to the experiments, the

numerical results show that the instability leads some-

how to a ‘‘periodic release’’ of a ‘‘packet’’ of lighter fluid

in the plume, with a periodic expansion of the diameter

of the rising jet (Figs. 9 and 10). It appears as a distur-

bance travelling towards the top (i.e. a perturbation of

the solutal and flow field rising along the core of the

plume).

The mathematical model and the associated numer-

ical algorithm have proven to be able to ‘‘capture’’ the

complex time-dependent phenomena and to provide

information and data about the intrinsic nature of the

instability.

It must be pointed out that the oscillations do

not exhibit very regular and repeatable oscillations;

rather they are characterized by a ‘‘quasi-periodic/non-

periodic’’ behaviour. This aspect is revealed both by the

experimental and numerical results. Therefore, the def-

inition of a well-defined ‘‘frequency’’ for the phenomena

is almost meaningless. However, the numerical code

captures the underlying physical mechanisms responsi-

ble for the onset of oscillatory instability and the ‘‘av-

erage’’ experimental and numerical frequencies agree in

terms of order of magnitude (the experimental oscilla-

tion period is about 7 s, the numerical one is about 9 s,

see the time intervals in the Figs. 7 and 9).

Computations obtained by ‘‘switching off’’ the sur-

face tension effects have proved that the phenomena

under investigation are driven by the buoyancy (gravi-

tational) effect only, whereas the solutal Marangoni flow

does not seem to play a critical role in the onset of the

flow instability.

Fig. 8 show the presence of a large toroidal convec-

tion roll wrapped around the solutal jet. The instability

is hydrodynamic in nature (the solutal field simply acts



Fig. 8. Computed evolution of the concentration and flow field patterns at the beginning of the dissolution process (droplet of

methanol dissolving into a matrix of cyclohexane at ambient temperature, initial volume of the droplet 3 ll, Vmax ¼ 5:4� 10�2 cm/s).

The time intervals are 8 seconds.
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as a ‘‘driving force’’ for the velocity field). When the

velocity exceeds a critical value, bifurcation to oscilla-

tory flow occurs. This explains why the instability occurs

only if a certain initial value of the drop volume is ex-

ceeded, whereas the flow exhibits stable solutal rising

plumes in the case of small initial volumes; the maxi-

mum velocity in the core of the rising plume in fact

depends on the flow rate of methanol through the drop

interface; in turn this flow rate depends on the surface

area of the drop and therefore on its radius.
With regard the nature of the instability, the phe-

nomena here discussed exhibit surprising similarities

with oscillatory instabilities of candle flames and of

buoyant plumes (see [17–20]). Cetegen [19] carried out

experimental studies dealing with the instabilities and

flow transitions of buoyant plumes/jets of gas mixtures.

The case of a plume of helium or helium/air mixture,

originating from a large axisymmetric nozzle with low

velocity, was investigated. The experiments pointed out

toroidal vortex formation as a result of rapid buoyant



Fig. 9. Computed evolution of the unstable solutal plume: concentration and flow field patterns for a 3 ll droplet of methanol dis-

solving into a matrix of cyclohexane at ambient temperature (Vmax ¼ 5:4� 10�2 cm/s). The time intervals are 1.8 seconds.
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acceleration of light plume fluid in heavier more or less

quiescient surroundings. In particular, it was found that

these plumes may undergo quasi-periodic oscillations

with a macroscopic behaviour very similar to that de-

scribed in the present work. As the buoyant fluid exits

the nozzle, plume boundary contracts towards the plume

centerline as a result of buoyant acceleration, due to the

hydrostatic pressure field and the condition imposed by
the mass conservation. The plume undergoes oscillations

close to the nozzle lip, similar to the oscillations ob-

served in the present study close to the drop surface.

Moreover, similar to the present case of solutal plumes,

Cetegen [19] found that only in some cases the buoyant

plumes exhibit periodic oscillations. The onset of oscil-

lations is in fact a function of the nozzle diameter, of the

nozzle exit velocity and of the density ratio between the



Fig. 10. Computed pulsating behaviour close to the surface of

the dissolving drop (figures (a) and (b) refer to the maximum

and to the minimum of an oscillation period respectively). (a)

Contraction of the plume diameter, expansion of the two sur-

face folds. (b) Contraction of the two surface folds, expansion

of the plume diameter.
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plume and the surrounding ambient medium [19]. In the

present case, instability occurs only if a critical initial

volume of the drop is exceeded.

Cetegen and Kasper [18] provided a very interesting

explanation of these phenomena: the mechanism leading

to the periodic oscillatory state of the flow field is con-

nected with the highly unstable (Rayleigh–Taylor) den-

sity stratification in the sharply contracting region of the

flow just above the nozzle exit. According to the present

numerical simulations, the same mechanism occurs in

the solutal flow, since unstable density stratification

occurs just above the dissolving drop. Note that simi-

larities exist also with the behaviour of candle flames

that exhibit an oscillatory motion often referred to as
‘‘puffing’’ [17]. Typically these oscillations result in for-

mation of large-scale (of the order of burner diameter)

flaming vortical structures at a short distance from the

burner surface. These structures significantly modify

the downstream flame behaviour as they rise through the

flame and finally burnout near the flame top.

Again, the behaviour is very similar to the periodic

‘‘release’’ of packets of fluid in the rising jet generated

above the dissolving droplets. The perturbation in the

solutal jet diameter originated at the drop surface rises

along the core of the jet and vanishes at the top.

In summary, ‘‘puffing’’ in isothermal helium plumes,

in candle flames and in the present case of droplet dis-

solution are all related to buoyant instabilities. In the

case of helium plumes, the driving force is the pressure

gradient between the helium reservoir and the ambient.

For candle flames the driving force is the heat released in

the core of the flame, due to the combustion process. In

the present case, the driving force for the oscillatory

instability is the concentration gradient due to the dis-

solution of the droplet placed at the bottom of the test

cell. The dissolution provides continuously lighter fluid

that is carried up due to the buoyancy forces.
5. Conclusions

The behaviour of solutal plumes rising around a

droplet of methanol during the dissolution in a matrix of

cyclohexane has been investigated with a numerical

model. Similar to the experiments, the numerical results

show that that the plume undergoes oscillations and

contractions towards the plume centerline. The mecha-

nism is very similar to other oscillatory instabilities of

candle flames or of isothermal buoyant jets.

Future studies will be dedicated to the parametric

analysis of the puffing phenomenon of dissolving drop-

lets, either experimentally or numerically.
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